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A conjugate equation of heat conduction is derived for a mater ia l  which behaves v iscoelas t i -  
cally under both shear  and volume deformation.  

In the derivation of the conjugate equation of heat conduction for a v iscoelas t ic  body in [1], the la t ter  
was assumed to behave viscoelas t ical ly  under shear  as well as under elast ic deformation by hydrostat ic  
compress ion  or tension. Although little volume relaxation and creep occur in metals  and many polymers  
within the l inear range,  such an approximation of the mater ia l  is not always valid [2-4]. Generally, vol-  
ume relaxation in a v iscoelas t ic  mater ia l  may not be d is regarded  in calculations of the change in internal 
energy [5]. This applies, f irst  of all, to problems where thermal  dissipation of v iscoelas t ic  energy is a 
problem of ma jo r  concern [6]. 

We will a ssume here  that the behavior of the mater ia l  under both shear  and volume deformation is 
v iscoelas t ic ,  with the deviators of the s t r e s s  and the s train tensor  related through a d i f ferent ia l -opera tor  
equation (based on any whatever model consist ing of elastic and viscous elements [4, 5, 7]): 

P { si i }  = q { ei i} ,  (1) 

and with the spherical  components 

P'{(~} = q'  { s - - % r } .  (2) 

In deriving the conjugate equation of heat conduction we use the fundamental energy equation for a 
continuous medium [1] : 

(ri~eii - -  qt,~ =/ ) .  (3) 

Splitting the s t ra in  tensor  eij into the s t a t e -o f - s t r a in  pa rame te r s  e~ = ei~ + eYsij and the dissipative s t ra in  
pa rame te r s  

8~i = el) + e"Si i, (4) 

(3) for an a rb i t r a ry  mechanical  model which represen ts  the viscoelast ic  state of the we can rewrite Eq. 

body as 

[(~;)m + (~;)~] __ q,,,  = U. (5) 

This equation will now be replaced by an equivalent sys tem of two equations: 

(~;)~ + v s  = 0 ,  (6) 

~u (~.)  - q,.~ = (7) 

Equation (7) will be rewri t ten so as to take into account relation (4) as well as the resolution of the s t r e s s  
tensor  ~ij into the s t r e s s  deviator sij and the hydrostat ic  s t r e s s  component ~. Namely, 

s~ (e~3 m + (r~ (~)" 6~j~t: T ,  , s~io~j + q~.~ (8) 

Since for the viscous deviator we have sij6ij = 0 and eij6ij = 0, hence the third and the fourth t e rms  on the 
left-hand side of Eq. (8) are  equal to zero.  
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Further  analogously expanding the f ree -energy  function into a power ser ies  [1] with respect  to the 
three  principal  invariants of the s t ra in  tensor  e y and the t empera tu re  T 1, then determining from Eq. (6) 
the relation between the entropy density and the f ree -energy  function, we obtain from (8) the general equa- 
tion of heat conduction for a viscoelast ic  body: 

r n  "R rn  E c~T = )~TT,ii -}- s!j (ei]) -1- 3~ m (e~) "~ - -  9 % K T o e v .  (9) 

The sum of the last  three  t e rms  on the r ight-hand side of Eq. (9) represents  the hea t - source  function, 
whose components define respect ively:  1) the rate  of heat generation due to dissipation of mechanical  
energy during shear  creep,  2) the rate  of heat generation due to dissipation of mechanical  energy during 
volume creep,  and 3) the ra te  of heat generation due to mechanical  expansion of the mater ia l .  

In the case of a Hook body, the internal source in the equation of heat conduction (9) is determined 
only by thermoelas t ic  dissipation of energy.  The average s t r e s se s  and s trains  are  in this case related 
according to the l inear  theory of thermoelas t ic i ty :  ~ = 3K(eY-- a TT). For a viscoelast ic  body, however, 
the volume s t ra ins  are  a resul t  of superposed elastic and viscous deformations so that ~ and e are  related 
according to the theological  equation (2). 

If volume creep in the mater ia l  is d is regarded,  then the equation of heat conduction (9) becomes the 
welt known equation in [1]. 

In order  to es t imate  the amount of mechanical  energy dissipated during volume creep in the mater ia l ,  
we rewri te  Eq. (9) as 

c8~ b = )~T,i ~ @ s~/(e~}) m (t @ N) - -  9 % K T o e Y .  (10) 

An analysis of the rat io N = 3~m([B)m/s~( [B)  m for a Maxwell body and for a general ized l inear  body 
indicates that 0 - N <- 0.5. In the special  case" " ' o f  a one-dimensional  state of s t r e ss  (v ~ 0) in these bodies  
N = 1/2" 1 - - 2 v / 1  + v. As can be seen, accounting for the viscoelast ic  behavior of the mater ia l  during 
volume deformations has the most  pronounced effect in mater ia ls  with a low Poisson ratio.  The heat 
source  due to volume creep is most  powerful here  when v = 0 and becomes  equal to half the thermal  flux 
dissipated during shear  creep in the mater ia l .  

For an incompress ible  medium (v = 0.5) the equation of heat conduction (10) becomes 
r n  "13 

c~(F : k~T,~i + &i (eq) m - -  3%To(~ (11) 

The absence of the 3qm([B) m t e r m  in Eq. (11) indicates that it is  valid to d i s regard  the effect which r e -  
laxation of the volume pa ramete r s  has on the internal heat generation, if the mater ia l  is also assumed in- 
compress ib le .  

It is to be noted that, from the energy point of view, the existence of mater ia ls  with --1 < v < 0 is 
not impossible [8]. For such hypothetical mater ia ls  N > 0.5 and in the special  ease  of v -* --1 the heat-  
source  function in Eq. (9) will be determined only by dissipation of energy due to volume creep and change 
in dilatation. 

Thus, defining the relat ion between average s t r e s s e s  and s t ra ins  in t e rms  of the l inear  theory  of 
thermoelas t ic i ty  for a body with rheological  proper t ies ,  as has been done in [1], will distort  both the quan- 
titative and the qualitative charac te r i s t i c s  of its thermodynamic  behavior.  
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N O T A T I O N  

is the deviator  of s t r e ss  tensor;  
is the deviator of s t ra in  tensor;  
a re  the differential operators ;  
a re  the coefficients involving mater ia l  proper t ies ;  
a re  the average  values of s t r e ss  and strain;  
is the l inear  expansivity; 
is the thermodynamic  temperature ;  
is the s t r e ss  tensor ;  
is the s t r a in - r a t e  tensor  (dot denotes a t ime derivative); 
is the thermal  flux vector;  
is the volume density of internal energy; 
are  the e las t i c - s t ra in  and d iss ipa t ive-s t ra in  tensors ;  
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a re  the deviator of e l a s t i c - s t r a in  and of d i ss ipa t ive-s t ra in  tensor  respect ively;  

a re  the average  value of elast ic s t ra in  and of dissipative s t ra in  respect ively;  
is the Kronecker  delta; 
is the number  of elements in a given model; 
is the entropy density; 

is the initial temperature of body; 
is the specific heat at constant strain; 
is the specific heat at constant stress; 
is the thermal conductivity; 
is the modulus of volume compression; 
is the Poisson ratio. 
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