CONJUGATE EQUATION OF HEAT CONDUCTION FOR
AN ISOTROPIC LINEAR VISCOELASTIC BODY

V. V. Kryuchkovskii and P, I. Khristichenko UDC 536.21

A conjugate equation of heat conduction is derived for a material which behaves viscoelasti-
cally under both shear and volume deformation.

In the derivation of the conjugate equation of heat conduction for a viscoelastic body in [1], the latter
was assumed to behave viscoelastically under shear as well as under elastic deformation by hydrostatic
compression or tension. Although little volume relaxation and creep occur in metals and many polymers
within the linear range, such an approximation of the material is not always valid [2-4]. Generally, vol-
ume relaxation in a viscoeélastic material may not be disregarded in calculations of the change in internal
energy {5]. This applies, first of all, to problems where thermal dissipation of viscoelastic energy is a
problem of major concern [6].

. We will assume here that the behavior of the material under both shear and volume deformation is
viscoelastic, with the deviators of the stress and the strain tensor related through a differential-operator
equation {(based on any whatever model consisting of elastic and viscous elements [4, 5, 7]):

Pis;} =Qleyl, (1)
and with the spherical components
P'{c}=Q {e—a,T} (2)

In deriving the conjugate equation of heat conduction we use the fundamental energy equation for a
continuous medium [1}:

05— Gii = U. (3)
Splitting the strain tensor &jj into the state-of-strain parameters s%’]. = e%’j + ayéi]- and the dissipative strain
parameters

el = eij 1 €85, (4)
we can rewrite Eq. (3) for an arbitrary mechanical model which represents the viscoelastic state of the
body as

off 1Eh)™ + (@)™ — g = U. )

This equation will now be replaced by an equivalent system of two equations:
0':'71" (e.:l’)m + TS ZU, (8)
off (ef)™ — Gi,s = TS. )

Equation (7) will be rewritten so as to take into account relation (4) as well as the resolution of the stress
tensor ojj into the stress deviator sjj and the hydrostatic stress component 6. Namely,

S (e5)™ = 0™ (& 8,8, + ()" 30, -+ 0™ (eBy)™ 8y, — g, = T'S. (8

Since for the viscous deviator we have sijéii =0 and Eij‘sii = 0, hence the third and the fourth terms on the
left-hand side of Eq. (8) are equal to zero.
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Further analogously expanding the free-energy function into a power series [1] with respect to the
three principal invariants of the strain tensor e% and the temperature Ty, then determining from Eq. (6)
the relation between the entropy density and the free-energy function, we obtain from (8) the general equa-
tion of heat conduction for a viscoelastic body:

T = 3Ty -+ s (€5)™ + 30™ (6°)" — 9, KT gev- 9

The sum of the last three terms on the right-hand side of Eq. (9) represents the heat-source function,
whose components define respectively: 1) the rate of heat generation due to dissipation of mechanical
energy during shear creep, 2) the rate of heat generation due to dissipation of mechanical energy during
volume creep, and 3) the rate of heat generation due to mechanical expansion of the material.

In the case of a Hook body, the internal source in the equation of heat conduction (9) is determined
only by thermoelastic dissipation of energy. The average stresses and strains are in this case related
according to the linear theory of thermoelasticity: o = 3K(eY —aT). For a viscoelastic body, however,
the volume strains are a result of superposed elastic and viscous deformations so that ¢ and € are related
according to the rheological equation (2).

If volume creep in the material is disregarded, then the equation of heat conduction (9) becomes the
well known equation in {1].

In order to estimate the amount of mechanical energy dissipated during volume creep in the material,
we rewrite Eq. (9) as
el = A,T ;; + ()™ (1 + N) — 9au KT ev. (10)

An analysis of the ratio N = 3010 (¢B)ym/ s.m(eB)m for a Maxwell body and for a generalized linear body
indicates that 0 = N = 0.5, In the special case of a one-dimensional state of stress (v # 0) in these bodies
N=1/2-1—2v/1 +v, As can be seen, accounting for the viscoelastic behavior of the material during
volume deformations has the most pronounced effect in materials with a low Poisson ratio. The heat
source due to volume creep is most powerful here when v = 0 and becomes equal to half the thermal flux
dissipated during shear creep in the material, '

For an incompressible medium (v = 0.5) the equation of heat conduction (10) becomes
eeT = MT ;i + 85 (€)™ — 3a, T 0. (1)
The absence of the 36 EB)™ term in Eq. (11) indicates that it is valid to disregard the effect which re-

laxation of the volume parameters has on the internal heat generation, if the material is also assumed in-
compressible.

1t is to be noted that, from the energy point of view, the existence of materials with —1<v <0 is
not impossible {8]. For such hypothetical materials N > 0.5 and in the special case of v = —1 the heat-
source function in Eq. {(9) will be determined only by dissipation of energy due to volume creep and change
in dilatation.

Thus, defining the relation between average stresses and strains in terms of the linear theory of
thermoelasticity for a body with rheological properties, as has been done in [1], will distort both the quan-
titative and the qualitative characteristics of its thermodynamic behavior.

NOTATION

Sij ' is the deviator of stress tensor;
1 is the deviator of strain tensor;
P, Q, P, Q are the differential operators;
Pns 9p» fh, by are the coefficients involving material properties;

o, € are the average values of stress and strain;

aT is the linear expansivity;

T is the thermodynamic temperature;

0y is the stress tensor;

éij is the strain-rate tensor (dot denotes a time derivative);
ai is the thermal flux vector;

U is the volume density of internal energy;

a%, eil? are the elastic-strain and dissipative-strain tensors;
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Ti = (T"’ TQ)/TO;
Ty

Ce

Cg

AT

K

v

are the deviator of elastic-strain and of dissipative-strain tensor respectively;

are the average value of elastic strain and of dissipative strain respectively;
is the Kronecker delta;

is the number of elements in a given model;

is the entropy density;

is the initial temperature of body;

is the specific heat at constant strain;

is the specific heat at constant stress;
is the thermal conductivity;

is the modulus of volume compression;
is the Poisson ratio,
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